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BACKGROUND OF THE PROJECT 
 
The goal of AUTOPROFIT is to significantly improve life-
time performance of model-based systems, like Model 
Predictive Control (MPC), Real Time Optimization 
(RTO), Model Based Sensors (MBS). Performance of the 
model based systems is known to degrade over time 
due to changes in the units and the operational 
conditions which require regular maintenance.   
Maintenance however is very labor intensive and 
 

 
 
highly specialized work. It is a serious cost factor, which 
may and does result in a limited life-time performance 
of the system. 
 
An answer on how to seriously reduce maintenance 
costs and at the same time significantly improve the life 
time performance of the system is given in the 
AUTOPROFIT project. 
 

THE BASIC IDEA OF AUTOPROFIT 

 

The ultimate goal of the project is to autonomously  
and continuously maintain real-time model based 
systems based on a business relevant cost function: 
 Continuously evaluate the performance of the 

process and automatically detect relevant 
performance degradation.  

 Autonomously diagnose the cause of the 
degradation and determine the best action.  

 Execute the selected maintenance action 

What action to take depends on the diagnosis and the 
outcome of the economic evaluation: 
 

o No further activity required 
o Retune the model based system 
o Remodel  the plant and retune the controller 

 
The procedure is given in more detail in the decision 
tree. 
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WORK PACKAGE OBJECTIVES 
The aim of WP2 is to extend the linear maintenance loop 
such that situations, where an appropriate nonlinear 
MPC is likely to improve control performance are 
detected.  After detection, the current linear model of 

the controller is gradually adapted to describe the 
nonlinear and time-varying process behavior. The 
strategy follows the least-costly philosophy of the 
project and allows an autonomous, smooth transition 
between linear and nonlinear MPC.     
 

NONLINEAR MAINTENANCE LOOP 
 

INCREMENTAL MODELS (BEYOND LTI) 
 
The LPV concept 
 
 
 
 
 
 
 
 
Benefits in using LPV models:
 Representing between multiple operating points 

and transient them in an efficient manner.  
 Outer and inner approximation concept of the 

dynamic behavior: global vs local approaches of LPV 
modeling 

 Preserving linearity between input and output 
signals (this allows to extend the stealth excitation 
approach).  

 For frozen values of the scheduling parameters, LPV 
systems become LTI (this provides the possibility for 
an efficient gain-scheduled MPC design).  
 

DATA-DRIVEN MODELING OF LPV SYSTEMS 
The developed identification approaches are able to:
 Efficiently handle general conditions on the noise 

affecting the output signal observations. 
 Efficiently handle the correlation (due to the closed-

loop) between the noise corrupting the output 
measurements and the input of the system. 

 Directly estimate the LPV model structure (order, 
dependencies) from the data.   
 

MPC FOR LPV SYSTEMS 
Gain-scheduled MPC: Underlying control strategy:

1. Measure the scheduling parameter p at time k.  
2. Keep the scheduling parameter constant (and 

equal to p(k)) during prediction (LPV LTI) 
3. Compute an LMPC for the frozen LTI model. 
4. k  k +1. and go back to Step 1. 
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nonlinearity? 

yesno

Update model structures and parameters

Design an MPC to handle nonlinear 
phenomena

Assess performance of the NMPC w.r.t. 
the current LMPC. Is NMPC beneficial? 

no yes

Adjust NMPC tuning online
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SUMMARY 
The main idea of the WP2 is to detect when model/plant 
mismatch due to appearing nonlinearities deteriorate 
the MPC performance and correcting that by re-tuning 
the controller and/or updating (extending) the model. 
Simulation models are used to evaluate the developed 
solutions in a Matlab based benchmarking environment.  

The data-driven incremental modeling methods, 
developed in WP2, have been applied for modeling of a 
high-purity distillation column and of a continuous pulp 
digester. The obtained models have been used in the 
gain-scheduled MPC design and applied on the pulp 
digester benchmark. Studies have been conducted to 
ensure data-driven detection of plant nonlinearities.  

DISTILLATION COLUMN
Process description  

                                   Manipulated variables: 
 Vapor and liquid flows 
 

                                 Measured variables: 
 Top & Bottom purity
 

   Scheduling variables: 
 Top & Bottom purity 
 

                                                                                                    Sampling time: 2.5 min 
                                     Feautures: 

 Directionality 
 Locally changing order 
 Large OP region 
          Top: 99.5% - 85% 
          Bottom: 1% - 15% 

Data-driven 
Modeling: 
 Comparing 

several LPV 
methods 

 Fully data 
driven se- 
lection of  
the model  
structure 

 SNR: 25 dB 
 Data: 26 days 

PULP DIGESTER 
Process description  
                                                              Manipulated variables: 

 3 liquor flows 
 2 temperature set points  
 

                               Process variables: 
 5 temperatures 

 

 Controlled variable: 
 Kappa number 
 

      Scheduling variable: 
 Chip feed rate 

Generating data   
 Closed-loop simulation  (LMPC designed based on a 

linearized model of the pulp digester) 
 Sampling time: 10 minutes 
 Measurements of the Kappa number corrupted by noise 

(SNR=15 dB) 
 Number of measurements used for estimation: N=1200  

  
Data-driven modeling 

 
 
 
 
 
 
 
 

 
 
Gain-scheduled MPC 
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WORK PACKAGE OBJECTIVES 

 Develop methodology and tools for autonomous and 
low cost closed loop testing. 
 

 Methods adapted to constrained control, such as 
MPC, and MIMO system requirements. 
 

 Link experimental costs to actual economic costs. 

WORKPACKAGE OUTCOMES 
 

 Experiment design methods for MPC: 
 Constrained open loop signal generation 
 MPC-X - MPC with eXperiment design 
 Stealthy MPC – MPC with open loop excitation 

 
 MOOSE – A toolbox for optimal input design in 

MATLAB 

APPLICATIONS ORIENTED EXPERIMENT DESIGN 

 Identification experiments with precisely the 
information necessary for models giving satisfactory 
performance. 
 

 Least costly experiment design. 
 

 Information matrix requirements. 

 

PROBLEMS WITH EXPERIMENT DESIGN UNDER MPC 

 Current closed loop experiment design methods 
based on designing the signal spectra. 
 

 Methods developed for linear controllers. 
 

 MPC is nonlinear. The map from reference to input is 
non-linear. 

SOLUTIONS FOR EXPERIMENT DESIGN UNDER MPC 
 

 Stealthy MPC – by hiding the excitation from the 
controller the identification becomes an open loop 
problem. 
 

 MPC-X – including constraint on experiment design in 
the MPC so that the excitation is generated by the 
controller. 

CONSTRAINED SIGNAL GENERATION 

 Generation of signal with prescribed autocorrelation 
while satisfying input and output constraints. 

 minimize( ),…, ( )subject to  = +     =              
 

 Difficult optimization can be simplified using receding 
horizon control ideas. 
 

 Extended to robust MPC to satisfy constraints under 
model uncertainties 

 

EXAMPLE – DOUBLE TANK SYSTEM 
 

 Parameters re-identified online 
 

Set of models that when used in the MPC give 
satisfactory control performance 

Identified model should end 
up in this set 
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STEALTHY MPC 

 Idea – Hide excitation from MPC – open loop 
identification!  
 

 Patent pending. 

EXAMPLE 
 

 Experiments 
 Least costly experiment design 
 White noise signal with same power  

 Results 
 Output with (blue) and without (red) excitation. 

 
 
 
 
 
 

 White noise does not give satisfactory model. 
 Conclusion – Stealthy MPC works even if  is not 

exactly . 

MPC-X – MPC with eXperiment design 

 Challenges: 
 Which constraint should be added? 
 Computational tractability. 
 minimize{ ( )} ( ) ( ) +  ( ) 

subject to
( + 1) = ( ) + ( )( ) = ( ),  = 1, … ,(1) = ( )( ) ,  = 1, … ,( ) ,  = 1, … ,+  ( ) ( )2 ( ) 

 

Different methods to achieve same closed loop performance 
 

Method Simulation time Output variance 

MPC-X 100 0.12 
White ref. 100 0.20 
White ref. 520 0.12 

 

EXAMPLE – DOUBLE TANK SYSTEM 
 

 N = 100 samples 
 Umax = 2, Ymax = 1  
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Standard M
PC 

Past Information 
matrix 

Predicted 
Information matrix 

Performance 
specification

MPC-X: Input variance 0.36 (0.28 minimum possible) 

Qu=100 

Qu=0.001 



 

WP 4 – PERFORMANCE MONITORING AND 
DIAGNOSIS 

  
Coordinator Contact: Prof. dr. ir. Paul Van den Hof, Delft University of Technology, P.M.J.vandenhof@tue.nl 

  

WORK PACKAGE OBJECTIVES                                                                                                     
 
 
 
 
 
 
 
 

EXPECTED OUTCOME  

PROGRESS AND PLANS 
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The objective of this workpackage is twofold and 
applies to MPC-controlled processes.
 
One objective is the development of a performance 
monitoring algorithm. This algorithm triggers a 
diagnostic tool  

when performance is deemed insufficient.

The diagnostic tool is the second objective, i.e., the 
development of a detection algorithm that is able to - 
using least-costly experiments on the process - detect 
the cause of the observed performance drop. 

 A generic performance measure which is 
applicable to many large-scale industrial 
processes.  
 

 A diagnosis algorithm that can distinguish between 
two types of performance drops: changes in plant 
dynamics and in disturbance characteristics. We 
exclude base-layer problems from our diagnosis. 

  

P
viol

by

( ) = ( ) + | | 

 The proposed performance measure computes the cost of the 
process, using data from a moving time window, and consists of two 
components. One part is associated with the distance between the 
mean of the money-making variable ( ) and its respective constraint 
(b). The second part is a cost involved due to constraint violations. 
The cost at time t is given by  
 

 
where ,  are user-defined constants and ( ) is the 
probability of violating constraint b. A performance drop occurs 
when ( ) > . This measure accommodates typical MPC behaviour 
in where a money-making variable is pushed towards its constraint. 
  
The figure shows a histogram of a money-making variable (blue) at 
a particular point in time, from which the cost is computed. 
 

The above mentioned types of performance drops are 
diagnosed by checking whether an identified model (Gid) of the 
true system lies in a set (Dadm) containing all models that exhibit 
satisfactory closed-loop performance under the original 
disturbances. See visualisation below. 
 
 
      Plant change        OR      Disturbance change 
 
 
 
 
 
 
Dadm                Dadm 
 
 
We also consider optimal design of the diagnosis experiment, 
in where the excitation signal has minimal power whilst 
ensuring a particular accuracy on the identified model. 
Furthermore, a joint framework has been developed for 
optimal design of both the diagnosis experiment and the 
(eventual) re-identification experiment (WP3). 
It allows us to minimize the overall excitation cost incurred for 
detection and re-identification through optimal design of the 
excitation signals. 
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WORK PACKAGE OBJECTIVES
The quality of MPC, like any other model based
operation support systems (such as Real Time
Optimization), is mainly determined by the accuracy
and the maintained calibration of the model. If
proper supervision is not performed, the
performance of MPC degrades over time due to the
model plant mismatch. Hence, the influence of the
modeling uncertainty on the performance of MPC is
of great importance.

The current tuning practice of these controllers is heuristic
and there has been no standard way of tuning MPC that
takes into account model plant mismatch. Despite the
research efforts in tuning methods for MPC in literature,
MPC tuning strategies that consider robustness in process
industries often lead to a conservative tuning, which might
be too far from the optimal trade off between robustness
and nominal performance. With this observation in mind,
work package 5 focuses on finding the optimal tuning which
achieves this balance.

APPROACH
A good tuning is reflected in the low variance of key
output variable(s) without any constraint violation.
The relation between the variance of the key
output(s) and the bandwidth of the closed loop
system is given in Figure 1. Point A of the curve
reflects an overly conservative tuning, point C is an
overly high bandwidth tuning and point B
corresponds to the optimal bandwidth. To find the
optimal closed loop bandwidth, a two layer tuning
method is proposed:

 Upper layer: Solve an online optimization problem to
find the optimum (e.g. by extremum seeking or online
monitoring the output variance).

 Lower layer: Find the weighting matrices such that the
bandwidth of the closed loop system matches the
bandwidth in the upper layer.

Figure 1. Relation between closed loop bandwidth
and variance of key output(s).

Methods to calculate weighting matrices
 Controller matching by inverse optimality.
 Controller matching by optimization.
 Studying the asymptotic behavior of the Toeplitz matrix, which

reflects the relation between future inputs and future outputs.

EXAMPLE: BINARY DISTILLATION COLUMN

The controller matching by optimization is applied to
a model of a binary distillation column. The optimal
tuning is obtained by manually changing the
bandwidth. The performance deteriorates due to a
change in the disturbance and restored by re tuning
the MPC.

Figure 2. Top and bottom compositions of the column.
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MOTIVATION 
Optimization-based tuning methods are proposed to 
satisfy a performance specification and at the same 
time to guarantee state constraints in the presence of 
unknown disturbances represented uncertain 
parameters.  
 

 
However, this idea results in a semi-infinite problem where 
an additional inner optimization problem must be solved 
for the closed-loop behaviour because at every sampling 
time, the control calculation involves the solution of an 
optimization problem. 

APPROACH 
One of the strategies to solve the optimization-based 
MPC design and tuning problem requires two 
reformulation steps. First, the bi-level optimization 
problem is converted to a single-level dynamic 
optimization problem replacing the inner 
optimization problem, i.e., the MPC, by its Karush-
Kuhn-Tucker (KKT) conditions.  min, , , , , ( ( ), , ) s. t. ( ) = ( ) + ( | )+ ( , ),( ) = , 0 ( ), , ( | ) = [ 0 0] , 

= 0,1,2, … 

 0 = + + + , 0 = + , 0 = , 0 = ,   0,   0. 
The resulting single-level optimization problem 
constitutes a semi-infinite program (SIP) [1], for which 
finitely many degrees of freedom ,  are optimized 
on a feasible set described by infinitely many 
constraints. Thus, the second reformulation reduces 
the infinite number of constraints to a finite number 
using the so-called local reduction approach.  

 
This approach requires a local representation of the so-
called lower level problems associated with the SIP for which 
normal vectors of critical manifolds were employed to 
provide such kind of representation. 
 
The so-called normal vector approach [2] reduces the 
infinite number of constraints to a finite number of 
restrictions based on detecting and backing-off critical 
boundaries. These boundaries are defined by a set of points 
at which a property of interest changes qualitatively. In this 
case, the normal vector approach will be applied to 
guarantee that the state constraints are satisfied in the 
presence of unknown disturbances represented by uncertain 
parameters. 

Fig. 1: Critical manifold Mc  and its normal vector provides a local 
representation for the local reduced approach, and  separates regions in 

the parameter space with qualitatively different system behaviour 
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[1] Stein, O.: 2012, How to solve a semi-infinite optimization problem, European Journal of Operational Research 223(2), 312 – 320. 
[2] Muñoz, Gerhard & Marquardt, “A normal vector approach for integrated process and control design with uncertain model parameters and 
disturbances,” Computers and Chemical Engineering, vol. 40, 2012 

WORK PACKAGE PARTICIPANTS
TU/e, RWTH, KTH, ABB. 

 



WP 6 – BENCHMARKING AND INDUSTRIAL
APPLICATION

Coordinator Contact: Prof. dr. ir. Paul Van den Hof, Delft University of Technology, P.M.J.vandenhof@tue.nl

WORK PACKAGE OBJECTIVES
Autoprofit’s main idea is to detect when model/plant mismatch destroys MPC
performance, and then correct that by updating the model and/or tuning.
Simulation models are used to evaluate the tools and functions developed in
a Matlab based benchmarking environment. This is a first step of validation.

As further validation the resulting prototype tools are applied to two
industrial cases. By this it is expected to learn:

 How well do they work in practice
 If they don’t work, find out why
 What needs to be added to improve usability

SIMULATION MODELS

Distillation column

Control and optimization objectives
Top composition above constraint – But not too far
Bottom composition less important

Control solution: MPC with …
Controlled variables (CV): Top composition, yt

Bottom composition yb
Manipulated variables (MV): Liquid flow, L

Vapor flow, V
Main scenarios to study
Change of plant gain directionality by use of a rotation matrix
Increased disturbance level in feed composition and flow rate

Pulp digester Control objectives
·  Kappa number (remaining lignin)
   at setpoint or below constraint
·  Temperatures within constraints

Control solution: MPC with …
Controlled variable (CV):
·   Kappa number
Manipulated variables (MV):
·   3 liquor flows,
·   2 temperature setpoints
Feedforward variable (FF):
·   Chip feed rate
Process variables for state
estimation (PV):
·   5 temperatures

Main scenarios to study
Hardwood or softwood pulp
Operating at different Kappa

INDUSTRIAL CASES

FT Depropanizer in synthetic fuel catalytic cracker plant
A 56 tray distillation column that separates C3 and lighter components (side
draw) from C4 and heavier components (bottom)

SCC plant

MPC with …
11 CV: C4 content in side draw; Feed drum level and rate-of-change; Column
pressure; Bottom temperature; Reboil flow; 5 control valve positions
4  MV:  Feed;  Ratio  between side  draw and feed;  Delta  pressure;  Feed to  C3
header sharing the same feed drum
3 FF: Feed drum pressure and its control valve position; Another feed sharing
the same feed drum
Objectives:
Maximize C3 production (side draw flow) while maintaining its C4 impurity
within specification. Prevent flooding and flaring. Use buffer capacities in feed
drum and bottom to reduce feed variations.

Flotation process in a zinc ore concentration plant

MPC with …
2 CV:    Zn concentration in product and tailings
3 MV:  Two air flows, reagent addition
1 FF:    Ore feed Zn concentration (varies 3-11%)
3 PV:   Two Zn concentrations, recirculating flow

Objective: Maintain the CVs at their setpoints,
and adjust the setpoints for optimal operation

Flotation tanks

WORK PACKAGE PARTICIPANTS
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INTRODUCTION 
The Experimental Validation Campaign at SASOL 
The purpose of the industrial validation campaign was to determine whether 
the AUTOPROFIT work package developments may be successfully 
implemented on industrial scale processing units. 

The SASOL FT-Depropaniser 
The FT-depropanizer is a total reflux 56-tray tower with a side draw section 
above tray 38. The purpose of the unit is to separate C3s and lighter from 
heavier components. 
 
The variables used to control the fractionation are primarily the feed-to-side 
draw ratio and the column pressure differential. 

 
Control and optimization objectives 
Maximize the side-draw product (C3s) while maintaining the 
quality (no impurities such as C4s) 
 
Avoid flaring and column flooding from column pressure and 
delta-pressure high limits violations.  
 
MPC-X Control Solution 

Primary MVs Primary CVs 
Feed-to-Side draw ratio Side draw composition 
Delta-pressure Column bottom’s temperature 

 

           VALIDATION EXPERIMENTS 
 

 Establish initial conditions\benchmarks: Open-loop binary 
step tests were executed and models were successfully 
identified. Initial tuning and performance benchmarks were 
established for MPC-X. 
 

 Manually force a plant-model mismatch: Changes to the 
MPC-X model poles and gains were made. 

 
 

 Performance improvements via tuning: After the plant-
model mismatch was forced and the consequent 
performance drop established; MPC-X tuning changes were 
made. 
 

 Performance improvement via closed-loop step tests and 
re-identification: Minimally disturbing excitation signals 
were executed under closed-loop conditions for model re-
identification 

RESULTS 
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